
Notes for the Wind 3DP Instrument

Lynn B. Wilson III

July 25, 2011

Contents

1 Microchannel Plates 2
1.1 MCP Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Goruganthu and Wilson, [1984] . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Meeks and Siegel, [2008] . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Schecker et al., [1992] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Wind 3DP Particle Detector 7
2.1 Wind 3DP ES Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8

3 Distribution Functions 9
3.1 Particle Data Structures in IDL . . . . . . . . . . . . . . . . . . . . .. . . . . . . 10
3.2 Unit Conversions for Wind 3DP . . . . . . . . . . . . . . . . . . . . . . .. . . . 12

4 Distribution Function Calculation 13
4.1 Density (0th moment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Number Flux (1st moment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Velocity/Momentum Flux (2nd moment) . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Heat Flux (3rd moment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Inflight Calibration 17
5.1 Dead Time and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 18
5.2 IDL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 19

A Appendix: Definitions 20

1



1 Microchannel Plates
The top-hat analyzer is an instrument which uses two parallel curved plates as a velocity/energy

filter. A common version uses a spherical geometry (see Figure 5.1 inPaschmann and Daly[1998]
for example) with an applied potential between the plates. Curved plate ES analyzers measure E/q
and typically use other instruments to obtain spatial measurements, such as a combination of top-hat
with microchannel plates.

A microchannel plate (MCP) consists of a series of small (5µm to 0.25 mm diameter) holes
(or channels) in a thin plate (typically 0.4-3.0 mm thick) made of a conducting material specially
fabricated to produce signals similar to a secondary electron analyzer. MCPs are often used in
pairs where a cross-sectional cut through two connecting channels creates a v-shaped tube, called
a chevron pair. This prevents incident particles from directly impacting the detector behind the
plates. When a particle impacts the channel wall, if it has enough energy, it will produce a shower
of electrons. The number of electrons per incident particleimpact is referred to as the gain of the
detector [Paschmann and Daly, 1998].

There is a fraction of particles which either strike the porevoids (spaces between channels)
or those which do not generate an electron shower/avalanchewhich are undetected. These factors
influence thequantum efficiencyof the detector. It is important to consider situations whenthe mean
kinetic energy (i.e. temperature) of the background particles is below Emin. Under these conditions,
the density and pressure are underestimated but more so for the density, thus the estimate of average
kinetic temperature,<T> = 1/3 Tr[P]/N, will be too high. We also find that estimates of bulk
velocity magnitudes are too high (direction is okay unless large anisotropies occur). In the opposite
scenario (<KE> > Emax), both N and P are still underestimated but now P more so than N. Thus,
<T> is too low and the bulk velocity will be too small as well [Paschmann and Daly, 1998].

1.1 MCP Efficiency
Before going into too much theory, we should define a physicalquantity of an MCP, which is

called the open area ratio:

f OAR=

(

π
√

3
6

)

(

d
p

)

(1)

whered is the diameter of the channels andp is the pitch or center-to-center spacing of the channels.
A typical MCP has a channel length-to-diameter ratio of 40:1and fOAR∼ 60-70%.

1.1.1 Goruganthu and Wilson, [1984]

Goruganthu and Wilson[1984] calculated the relative electron detection efficiency of a detector
consisting of two MCPs in a chevron arrangement with a carboncoated high transmission (94%)
copper grid 6 mm in front of the first MCP.

If we let Tmax = the maximum emission coefficient,δ (E) = secondary emission yield function,
and Emax = energy at which efficiency reaches its maximum value [Bordoni, 1971], then we have:

ε =
1−e−kδ (E)/δ max

1−ek (2)
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whereδ (E) is given by:

δ (E) = δ max

(

E
Emax

)1−α
[

1−e−Tmax(E/Emax)
α

1−e−Tmax

]

(3)

whereδ max is the maximum value of the secondary emission coefficient, kis an adjustable parameter
that depends uponδ max and a complicated probability.

If we assume the distribution of secondary electrons is Poissonian in nature, P(n,δ ) = e−δ δ n/n!
whereδ = δ (E) the secondary emission coefficient, then we can show thatthe extinction probability,
X, of a chain process started by an electron of energy E1 is given by the smallest root of:

X = e−δ (E1)(1−X) . (4)

Therefore, the probability that a process started by an electron with energy Eo terminates is given
by:

X1 =
∞

∑
n=0

P[n,δ (Eo)]Xn = e−δ (Eo)(1−X) (5)

where we have used the known relationship:

∞

∑
n=0

ent λ ne−λ

n!
. (6)

We can simplify the right-hand side of this equation by usingEquation 4 to get:

∞

∑
n=0

P[n,δ (Eo)]Xn =
∞

∑
n=0

en[−δ (E1)(1−X)] δ n(Eo)e−δ (Eo

n!
(7a)

= eδ (Eo)[e−δ (E1)(1−X)−1] (7b)

= eδ (Eo)(1−X) (7c)

(7d)

which leads us to the relationship:

eδ (Eo)(1−X)−1=−(1−X) (8)

which confirms Equation 4. Now we use:

X1 = eδ (Eo)(1−X) (9a)

=
(

e−δ (E1)(1−X)
)δ (Eo)/δ (E1)

(9b)

= Xδ (Eo)/δ (E1) (9c)
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which is Equation 3 inBordoni [1971]. Now if we compute the probability, X2, that an incident
electron with energy, E, does not produce any pulses, we find:

X2 =
∞

∑
n=0

P[n,δ (E)]X1
n = e−δ (E) ·eδ (E)X1 (10)

which results in an efficiency of:

ε = 1−X2 (11a)

= 1−e−δ (E) ·eδ (E)X1 (11b)

= 1−e−kδ (E)/δ max (11c)

where k is defined by:
k= δ max(1−X1) (12)

andδ max is the maximum value of the secondary emission coefficient.
The values for Equations 2 and 3 used by the Wind/3DP EESA Low detector are: Tmax = 2.283,

Emax = 325 (eV),α = 1.35,δ max = 1.0, and k= 2.21.

1.1.2 Meeks and Siegel, [2008]

Meeks and Siegel[2008] calculated theoretical estimates of the dead time ofa radiation detector,
where they define the following:

1. τ ≡ dead time= The time period when the detector is unable to measure incident particles
due to the channel’s discharge recovery time, preamp cycle rates, etc. If the count rates are
high, then the channel cannot fully recharge causing smaller avalanches, thus less gain which
translates to lower counts. The dead time is also defined as the minimum amount of time
between two pulses necessary for the detector such that it records two distinct pulses.

2. cr ≡ measured count rate

3. Cr ≡ corrected count rate

4. Nt ≡ total number of counts

5. P(t)∆t ≡ probability that a detector detects a particle between t andt + ∆t

6. Dt ≡ delay time (assume> τ)

From these definitions, we find that:
Cr =

cr

1−crτ
(13)

1See routinemcp efficiency.pro

4



and the probability is given by:
P(t)∆t =Cre−Cr t∆t (14)

which has a desireable property that the expectation value of tm is given by the simple form:

< tm >=
∫ ∞

0
dt tm Cre−Cr t =

m!
Cr

m (15)

and we find that conveniently,<t> = 1/Cr , which leads to:

< tm >

< t >m = m! . (16)

If we make a measurement at times ti and if our detector is working properly, then discretely we
should have:

∑Nt−1
i=0 t i

m/Nt
(

∑Nt−1
i=0 t i/Nt

)m = m! . (17)

However, we know that there is statistical uncertainty due to finite Nt and an unknownτ. To try and
estimateτ, we can take our times ti and subtract off a delay time, Dt , until the moments match the
expectation values derived from theory, thus we have:

∑Nt−1
i=0 (t i −Dt)

m/Nt
(

∑Nt−1
i=0 (t i −Dt)/Nt

)m (18)

where we vary Dt until Equation 17 RHS of Equation 16.
The variance of the numerator in Equation 16 is given by:

σ m
2 =< t2m >−< tm >2 (19a)

σ m√
Nt

=
< t >m m!√

Nt

√

2m!
(m!)2 −1 (19b)

where Equation 19a is the standard deviation of the numerator in Equation 16. The uncertainty of
the denominator is given by:

(

< t >±< t >√
Nt

)m

≈< t >m
(

1± m√
Nt

)

(20)

The fractional uncertainties of the numerator and denominator cannot be added in quadrature be-
cause the same ti appear in both expressions. We can, however, find a fractional uncertainty for
Equation 16 by subtracting the squares of the fractional uncertainties of the numerator and denomi-
nator and taking the square root to give:

σ tm =
1√
Nt

√

2m!
(m!)2 − (m2+1) (21)
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1.1.3 Schecker et al., [1992]

We define the following from [Schecker et al., 1992]:

1. τ ≡ dead time= The time period when the detector is unable to measure incident particles
due to the channel’s discharge recovery time, preamp cycle rates, etc. If the count rates are
high, then the channel cannot fully recharge causing smaller avalanches, thus less gain which
translates to lower counts. The dead time is also defined as the minimum amount of time
between two pulses necessary for the detector such that it records two distinct pulses.

2. Vbias ≡ bias voltage of MCP

3. Vsat ≡ potential at which the MCP efficiency no longer depends upon Vbias → Vbias at which
the measured count rate becomes independent of pulse height→ pulse height distribution
becomes independent of incident particle energy⇒ small changes in incident particle energy
will not affect the impact energy of incident particles

4. δ e ≡ secondary electron emission coefficient

5. Vc ≡ KE of electron hitting channel wall

6. κ ≡ some constant inδ e equation

7. Cr ≡ count rate

8. Ccr ≡ critical count rate= Nc/τ, where Nc is the number of channels

9. Ge ≡ gain function= δ e
n = (κ Vc)n, wheren= number of stages or cascades/avalanches/showers

of electrons

10. α ≡ ratio of channel length, L, to diameter, d

11. φ e ≡ initial energy of an electron emitted perpendicular to the channel wall

12. Ce f f ≡ effective capacitance of plate

13. Is(T) ≡ stage/strip current

14. T≡ temperature of MCP

15. ∆t ≡ Nc/Cr

16. gf ≡ instantaneous scaling factor used to account for preamp, ADC gain, etc.
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We start by defining two relationships which were first derived by Eschard and Manley, [1971],
given by:

Vc =
1
4

Vbias
2

α2φ e
(22a)

n=
4α2φ e

Vbias

(22b)

and using the gain function we have:

Ge =

(

κVbias

n

)n

(23)

If we treat the channel as a capacitor which discharges afteremitting electrons, then we can define
a count-rate and temperature dependent gain function, G(∆t,T). Therefore, the voltage across the
plate, Vbias, will be:

Vbias

n
→ Vbias

n

[

1−e−∆t/τ
]

(24)

whereτ will now act like a recovery time of a capacitor given by:

τ =
VbiasCe f f

I s(T)
. (25)

We can simplify this equation by recognizing that:

| dn
dVbias

|=
(

n
Vbias

)

≪| dVc

dVbias

|= 2
n

(26)

which shows that the temperature dependence is dominated bythe Vc-term, which allows us to
assumen∼ constant. Therefore, we can simplify our gain function estimate by:

G(∆t,T) = δ e
n−1δ e(t,T) (27a)

=

(

κVbias

n

)n−1(κVbias

n

)

[

1−e−∆t/τ
]

(27b)

=

(

κVbias

n

)n
[

1−e−Is∆t/(VbiasCe f f)
]

(27c)

where we find that the shape of the G(∆t,T) curve only depends upon Ce f f and the parametersκ , φ e,
and gf only affect the amplitude.

2 Wind 3DP Particle Detector
The Wind/3DP instrument was designed to make full three-dimensional measurements of the

distributions of suprathermal electrons and ions in the solar wind. The instrument includes:...three
arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three
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closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above
∼20 keV... and Top-hat symmetrical spherical section electrostatic analyzers with microchannel
plate detectors (MCPs) are used to measure ions and electrons from∼3 eV to 30 keV...[Lin et al.,
1995].

The two types of detectors have energy resolutions ranging from ∆E/E≈ 0.3 for the solid state
telescopes (SST) and∆E/E≈ 0.2 for the top-hat electrostatic (ES) analyzers. The angular resolu-
tions are 22.5◦ × 36◦ for the SST and 5.6◦ (near the ecliptic) to 22.5◦ for the top-hat ES analyzers.
The particle detectors can obtain a full 4π steradian coverage in one full(half) spin (∼3 s) for the
SST(top-hat ES analyzers).

2.1 Wind 3DP ES Analyzers
The arrays of detectors are mounted on two opposing boomlets, each 0.5 m in length. The top-

hat ES analyzers are composed of four separate detectors, each with different geometry factors to
cover different ranges of energies. The electron detectors, EESA, and ion detectors, PESA, are each
separated into low (L) and high (H) energy detectors. The H and L analyzers contain 24 and 16
discrete anodes, respectively. The anode layout provides a5.6◦ polar angle (θ ) resolution within
±22.5◦ of the ecliptic plane, 11.25◦ to±45◦, and finally 22.5◦ for θ > 45◦. The analyzers are swept
logarithmically in energy and counters sample at 1024 samples/spin (∼3 ms sample period). Thus
the analyzers can be set to sample 64 energy samples per sweepat 16 sweeps per spin or 32 energy
samples per sweep at 32 sweeps per spin,etc.

Both PESA analyzers have R1(2) = 3.75 cm(4.03 cm) and entrance opening half-angle of∼19◦,
which gives a∆R/<R> ≃ 0.072. They both have∆E/E= 0.22 FWHM and∆ψ = ±7◦. Ions are
post-accelerated by a variable grid (initially set to -2500V) with transmission of 75%. PESA Low is
attenuated by a factor of 50 to avoid saturation in the solar wind. PESA Low has an MCP detection
efficiency of roughly 50% [Lin et al., 1995]

EESA Low is nearly identical to PESA Low, but the electrons are post accelerated by a+500
V (initially) potential and a single grid attenuation. EESALow has an MCP detection efficiency of
roughly 70% [Lin et al., 1995].

The MCPs are chevron pairs with gain factors of∼2 × 106, roughly 1 mm thick, and a bias
angle of∼8◦. PESA Low and EESA Low use single 180◦ half-ring chevron pairs while both EESA
High and PESA High use two half-rings to get 360◦ FOV. The charge pulses produced by the MCPs
are collected on anodes and sent to preamplifier-discriminators (AMPTEK A111) and accumulated
by 24-bit counters (8C24) [Lin et al., 1995].

The detectors are defined as follows:

1. EESA-L (EL): covers electrons from∼3 eV to∼1 keV2 with a 11.25◦ spin phase resolution.
EL has a total geometry factor of 1.26× 10−2 E cm2-sr (where E is energy in eV) with a
nearly identical 180◦ field of view (FOV), radial to the spacecraft, to that of PESA-L.

2. EESA-H (EH): covers electrons from∼200 eV to∼30 keV (though typical values vary from
a minimum of∼137 eV to a maximum of∼28 keV) 32 sample energy sweep each 11.25◦

2These values vary from moment structure to moment structure depending on duration of data sampling, spacecraft
potential, and whether in burst or survey mode. The typical range is∼5 eV to∼1.11 keV.
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of spacecraft spin. EH has a total geometry factor of 1.01× 10−1 E cm2-sr, MCP efficiency
of about 70% and grid transmission of about 73%. EH has a 360◦ planar FOV tangent to the
spacecraft surface which can be electrostatically deflected into a cone up to±45◦ out of its
normal plane.

3. PESA-L (PL): covers ions with a 14 sample energy sweep from∼100 eV to∼10 keV (often
energies range from∼700 eV to∼6 keV) each 5.6◦ of spacecraft spin3. PL has a total ge-
ometry factor of only 1.62× 10−4 E cm2-sr but an identical energy-angle response to that of
PESA-H.

4. PESA-H (PH): covers ions with a 15 sample energy sweep from as low as∼80 eV to as high
as∼30 keV (typical energy range is∼500 eV to∼28 keV) each 11.25◦ of spacecraft spin4.
PH has a total geometry factor of 1.49× 10−2 E cm2-sr with a MCP efficiency of about 50%
and grid entrance post transmission of about 75%.

The stats on the entire instrument suite are shown in Table 1.

Table 1: Wind 3DP Instrument Specs

Detector Particle Energy Geometry Factor FOV Dynamic Range
Range (cm2-sr) (◦) (eV cm−2sr−1s−1eV−1)

EH/FPC e 100eV - 30keV 0.1 E 360× 90 ∼100-108

EL e 3eV - 30keV 0.013 E 180× 14 ∼102-109

PH p 3eV - 30keV 0.015 E 360× 14 ∼101-109

PL p 3eV - 30keV 0.00016 E 180× 14 ∼104-1011

SST
Foil e 25-400keV 1.7 E 180× 20 ∼10−1-106

Open e 20keV - 6MeV 1.7 E 180× 20 ∼10−1-106

3 Distribution Functions
Though it is mathematically easy to arbitrarily define a distribution function (DF) by benignly

writing f (~x,~v,t) and then calling it the DF, to do so in data analysis is not so straight forward. The
Wind spacecraft has a number of particle detection instruments, of which, we’ll focus on the 3DP
instrument [Lin et al., 1995].

3Note that in survey mode the data structures typically take 25data points at 14 different energies while in burst mode
they take 64 data points at 14 different energies.

4Note that PH has multiple data modes where the number of data points per energy bin can be any of the following: 121,
97, 88, 65, or 56.
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3.1 Particle Data Structures in IDL
Full 3-dimensional particle moments from the Wind/3DP instrument come as data structures in

the 3DP software. The list of structure tags often includes:

1. PROJECT NAME ≡ ’Wind 3D Plasma’

2. DATA NAME ≡ ’SST Foil’ or ’SST Open’ or ’Eesa High’ or ’Eesa Low’ or ’Pesa High’ or
’Pesa Low’5

3. UNITS NAME ≡ ’Counts’ or ’df’ or ’flux’ or ’eflux’ or ’rate’ or ’crate’

4. UNITS PROCEDURE ≡ ’convert so units’ or ’convertsf units’ or ’convertph units’ or
’convert esaunits’6

5. TIME ≡ Unix time associated with start of data sample (seconds since January 1, 1970)

6. END TIME ≡ Unix time associated with end of data sample

7. TRANGE ≡ [TIME,END TIME] (s)

8. INTEG T ≡ integration time (s) [= END TIME - TIME]

9. DELTA T ≡ a tag that may be a remnant from a previous missioni.e. FAST

10. MASS ≡ particle mass ineV/c2 but c (the speed of light) is in km/s (e.g. for EL or EH, mass
= 5.6856591× 10−6)

11. GEOMFACTOR ≡ total geometry factor (E cm2-sr) reported in original instrument paper
[Lin et al., 1995] determined from simulations and physical geometry of the detector

12. INDEX ≡ long integer tag associated with structure

13. N SAMPLES ≡ number of 3DP moments in structure (can vary if one desires data for long
time periods)

14. VALID ≡ integer value of 1 or 0 depending on whether the structure hasuseful data or not,
respectively

15. SPIN ≡ long integer associated with the spacecraft spin number

16. NBINS ≡ integer value defining the number of data bins

17. NENERGY ≡ integer value defining the number of energy bins

18. DACCODES ≡ integer array for digital to analog converter (DAC) information

5Note that each of these can be appended with ’ Burst’ if in burst mode.
6Note that PH structures incorrectly mark this value as ’convert esaunits’ instead of ’convertph units’.
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19. VOLTS ≡ float array of voltage for DAC (not something user needs to worry about in most
cases)

20. DATA ≡ [NENERGY,NBINS]-float array of data points (units defined byUNITS NAME)

21. DDATA ≡ [NENERGY,NBINS]-float array of uncertainty in data (user typically needs to
supply this)

22. ENERGY ≡ [NENERGY,NBINS]-float array of energy bin values (eV)

23. DENERGY ≡ [NENERGY,NBINS]-float array of differential energies (eV)

24. PHI ≡ [NENERGY,NBINS]-float array of azimuthal angle (deg) covered for each data point
at each energy

25. DPHI ≡ [NENERGY,NBINS]-float array of angular resolution of the azimuthal angle (deg)

26. THETA ≡ [NENERGY,NBINS]-float array of poloidal angle (deg) covered for each data
point at each energy

27. DTHETA ≡ [NENERGY,NBINS]-float array of angular resolution of the poloidal angle (deg)

28. BINS ≡ [NENERGY,NBINS]-byte array of values that define whether data is good for that
particular energy and data point

29. DT ≡ [NENERGY,NBINS]-float array of sample times for each data point (= tacc defined in
Appendix A)

30. GF ≡ [NENERGY,NBINS]-float array of differential geometry factors for each data point
which attempt to incorporate instrument response, detector efficiency, and instrument geome-
tries

31. BKGRATE ≡ [NENERGY,NBINS]-float array of background counts

32. DEADTIME ≡ [NENERGY,NBINS]-float array of times where detectors were not taking
data (see definition in Appendix A)

33. DVOLUME ≡ [NENERGY,NBINS]-float array of differential volume for each data point=
∆θ × ∆ψ ’ × ∆Ee f f (see Appendix A for definitions)

34. DOMEGA ≡ [NBINS]-float array of steradians covered for each data point = ∆θ × ∆ψ ’

35. MAGF ≡ 3-Element float array of magnetic field vector (GSE,nT)

36. VSW ≡ 3-Element float array of solar wind velocity vector (GSE,km/s)

37. SC POT ≡ scalar float of spacecraft potential (eV)
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3.2 Unit Conversions for Wind 3DP
To convert between different units (for EL, EH, and PL data),a few quantities must be calculated

first. Let us assume we start with the units of counts. Let the following quanties be defined:

1. E ≡ particle kinetic energy (eV) [associated with dat.ENERGY]

2. NE ≡ number of energy bins [associated with dat.NENERGY]

3. Nb ≡ number of data bins [associated with dat.NBINS]

4. δ t ≡ sample/accumulation time (s) [associated with dat.DT]

5. gf ≡ differential geometry factor for each data point [associated with dat.GF*dat.GEOMFACTOR]

6. Ms ≡ particle mass of speciess (eV/c2) [associated with dat.MASS]

7. τ ≡ dead time [associated with dat.DEADTIME]

8. sr ≡ measured count rate

9. d(E,Ω) ≡ the data [associated with dat.DATA]

10. δE ≡ the differential energy [associated withdat.DENERGY]

We can define the quantitysr by:

sr ≡
d(E,Ω)

δ t
(28)

Let, δ tc (unitless) be defined as:
δ tc ≡ 1−sr ∗ τ (29)
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where we define valuesδ tc,k < 0.2 as bad,⇒ !VALUES.F NAN7. The scale factors used to convert
from counts to any of the following are:

Counts : scale= 1.0 (30a)

rate : scale=
1.0
δ t

(30b)

crate : scale=
1.0

δ t ∗δ tc
(30c)

eflux : scale=
1.0

(δ t ∗g f)∗δ tc
(30d)

e2flux : scale=

(

1.0
(δ t ∗g f)∗δ tc

)

∗E (30e)

e3flux : scale=

(

1.0
(δ t ∗g f)∗δ tc

)

∗E2 (30f)

flux : scale=
1.0

(δ t ∗g f ∗E)∗δ tc
(30g)

df : scale=

(

1.0
(δ t ∗g f ∗E2)∗δ tc

)

∗
(

mass2

2.0×105

)

(30h)

If we did not start with counts, we could use the following table to correctly convert to the appropri-
ate units:

Counts : scale= scale∗1.0 (31a)

rate : scale= scale∗δ t (31b)

crate : scale= (scale∗δ tc)∗δ t (31c)

eflux : scale= (scale∗δ tc)∗ (δ t ∗g f) (31d)

flux : scale= (scale∗δ tc)∗ (δ t ∗g f ∗E) (31e)

df : scale= (scale∗δ tc)∗ (δ t ∗g f ∗E2)∗
(

2.0×105

mass2

)

(31f)

where the units associated with each string tag defining eachscale factor in Equations 30a-31f can
be found in Table 2.

4 Distribution Function Calculation
The following sections are an explanation of the routinesmoments3d.pro andmoments3du.pro.

For reference, seeCurtis et al.[1989] andPaschmann and Daly[1998].

7Floating pointNot A Number
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Table 2: Units for Wind/3DP Particle Moment Structures
String Associated
Tag Units

Counts #
Rate # s−1

CRate # s−1

EFlux eV cm−2 sr−1 s−1 eV−1

E2Flux eV2 cm−2 sr−1 s−1 eV−1

E3Flux eV3 cm−2 sr−1 s−1 eV−1

Flux # cm−2 sr−1 s−1 eV−1

DF s3 cm−3 km−3

4.1 Density (0th moment)
To calculate the distribution function, one must first definea weighting factor,wt (unitless).

wt depends upon the energy, spacecraft potential,φ sc, particle charge,q (in units of fundamental
charge), and differential energy. For mathematical and practical purposes,wt is constrained by
defining it as:

wt= 0.0<

(

E+q φ sc

δE
+0.5

)

< 1.0 (32)

We define the total energy at infinity of a particle as:

Ein f = E+q φ sc > 0 (33)

and this allows us to define a differential velocity,δv (
√

eV), as=
√

Ein f . If we convert our data
into energy flux units, we can define the differential distribution function in the following manner:

δ f ≡
(

δv
E

)(

δE
E

)

(d(E,Ω) dΩ wt) (34)

wheredΩ is the differential volume. At this point,δ f has the units ofeV−1/2cm/s cm−3 and is
a 2-dimensionalNE×Nb-array, where the second dimension,Nb, corresponds to the different data
points taken throughout the sample. The number associated with the tag nameMASSin any 3DP
data structure derives from the mass of the particle in unitsof eV/c2 and the value ofc2 (speed of
light squared) in km2/s2 as illustrated the following equation for an electron:

me =
510,990.6eV/c2

(2.99792458×105km/s)2 (35a)

= 5.6967578×10−6 eV/(km/s)2 . (35b)

To getδ f into useful units, we do the following:

δ f 1 = δ f × Ms

2
×10−5 (36)
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where the factor 105 is a conversion factor to multiply bycm/kmto get the root of the mass in units
of eV1/2(cm/s)−1, so that nowδ f has units ofcm−3. Therefore, we can define a particle density of
speciessas:

Ns =
NE−1

∑
i=0

Nb−1

∑
j=0

(δ f 1) i, j (37)

4.2 Number Flux (1st moment)
A flux, by definition, is a somewhat arbitrary unit of measure when not specified. The reason is

that to say flux, one has not defined what the flux is referring to. Flux is defined as the rate of flow
of [?], where [?] can be nearly any physical unit. Typical examples include number flux [length−2

time−1], velocity flux [length−1 time−2], mass flux [mass length−2 time−1], energy flux [energy
length−2 time−1], etc. As shown in dimensional analysis, a flux is effectively a density multiplied
by a velocity, where the density could be a number, mass, energy, etc. density. It is useful to note
that for ES analyzers, the distribution function at energy Ei and angles (φ j , θ k), f i, j,k, is proportional
to C(Ei ,φ j ,θ k) Vi, j,k

4, where C(Ei ,φ j ,θ k) is the count rate [counts/second] andVi, j,k is the velocity
of the particle. Typically it is assumed thatf (V) is constant over integration volume, d3V, where
d3V = V2dV = V3(dV/V)8. Integrals are replaced by summations and the process of calculating the
moments is done as usual with the above assumptions.

The number flux calculation requires that we define relative directions/vectors, since flux is a
vector quantity. In the spherical coordinate system, we defineθ (THETA in IDL structures) as the
polar angle from the XY-plane (thus, -π/2≤ θ ≤ π/2) andφ (PHI in IDL structures) as the azimuthal
angle from the X-axis (i.e. physically this is typically the sun direction for a spinning spacecraft).
Therefore, a unit vector ˆr is defined as:

r̂ ≡ (cosθ cosφ) x̂+(cosθ sinφ) ŷ+(sinθ) ẑ (38)

The components of the number flux [cm−2 s−1] are defined by:

Fx =
NE−1

∑
i=0

Nb−1

∑
j=0

[

(δ f )cosφ cosθ
(

Ein f

E

)]

i, j (39a)

Fy =
NE−1

∑
i=0

Nb−1

∑
j=0

[

(δ f )sinφ cosθ
(

Ein f

E

)]

i, j (39b)

Fz =
NE−1

∑
i=0

Nb−1

∑
j=0

[

(δ f )sinθ
(

Ein f

E

)]

i, j . (39c)

We can see that the units are the same as those for [NV] = [(# length−3) * ( length time−1)], which
is the definition of a number flux. Note that the bulk velocity,Vs, is simply= Fs/Ns.

8Note: dV/V= constant for ES top-hat analyzers since they use dE/E= constant in their design

15



4.3 Velocity/Momentum Flux (2nd moment)
The next moment of the distribution function is the velocityor momentum flux. The difference

is only a factor of mass for nonrelativistic calculations. We start by defining the following:

Vo = (δ f )

(

Ein f
3/2

E

)

(40)

which has units ofeV1/2cm−2s−1. The components of this moment are:

dVxx =
NE−1

∑
i=0

Nb−1

∑
j=0

[

cos2 φ cos2 θ Vo

]

i, j (41a)

dVyy =
NE−1

∑
i=0

Nb−1

∑
j=0

[

sin2 φ cos2 θ Vo

]

i, j (41b)

dVzz=
NE−1

∑
i=0

Nb−1

∑
j=0

[

sin2 θ Vo

]

i, j (41c)

dVxy =
NE−1

∑
i=0

Nb−1

∑
j=0

[

cosφ sinφ cos2 θ Vo

]

i, j (41d)

dVxz =
NE−1

∑
i=0

Nb−1

∑
j=0

[cosφ cosθ sinθ Vo] i, j (41e)

dVyz =
NE−1

∑
i=0

Nb−1

∑
j=0

[sinφ cosθ sinθ Vo] i, j (41f)

(41g)

where ~dVs,l ,m is a symmetric tensor for speciess. We wish to define the velocity flux, which is given
by:

~Vs,l ,m = ~dVs,l ,m

(

√

2
Ms

)

×105 (42)

which has units ofcm−1s−2. The momentum flux [eVcm−3] is defined by:

~ps,l ,m = ~Vs,l ,m

(

Ms

1010

)

(43)

where the factor of 1010 is used to convert the units of Ms to eV/(cm/s)2.
The pressure tensor is derived from the momentum, velocity,and number flux, given by:

~Ps,l ,m =~ps,l ,m− (Vs⊗Fs)

(

Ms

105

)

(44)

which has the same units as~ps,l ,m. The temperature tensorcan be derived from the pressure tensor
by dividing by Ns.
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4.4 Heat Flux (3rd moment)
To calculate the heat flux [eV km/scm−3 (≃ 1.602× 10−7 ergscm−2 s−1)], or kinetic energy

flux in the solar wind reference frame, a general treatment requires one to calculate the third moment
of the distribution function. In general, the heat flux tensor is defined as:

Qs = ρs < (V−U)(V−U)(V−U)> (45)

whereρs is the mass density andU is the average bulk velocity given (in general mathematicalform)
by:

U =
1
ρs

∫

dV f (~x,~v, t) V . (46)

The pressure tensor is a symmetric tensor, which means Pxy = Pyx. If the off-diagonal terms are not
zero, then the fluid exhibits shear stresses. The heat flux tensor, in its general form, is a 3×3×3-
element array, which, without symmetries, would have 27 distinct elements. However, due to sym-
metries imposed by assumptions and physical aspects of fluids, we can reduce this tensor to only
its symmetric components (10 total). The 10 variations of Ql ,m,n are: Qx,x,x, Qx,y,y, Qx,z,z, Qx,x,y, Qx,x,z,
Qx,y,z, Qy,y,z, Qy,z,z, Qy,y,y, and Qz,z,z. The routines MOMSUM.PRO and MOMTRANSLATE.PRO
automatically reduce Ql ,m,n to its symmetric components. Thus, we can find the kinetic energy flux
(typically of the electrons) in the solar wind reference frame given by:

Ql ,m,n =
∫

d3v f(~x,~v, t) vl vm vn . (47)

One calculates the moments sequentially and then transforms them into the appropriate coordinate
system (GSE in this case). The result is an assumed symmetrictensor which reduces it to a simple
rank-2 tensor or 3×3 matrix where the sum of the ith row results in the ith component of the resultant
electron heat flux vector. The above method is the same as the typical definition of the electron heat
flux given by:

~q =
me

2

∫

d3v f(~x,~v, t)~v v2 (48)

where me is the electron mass,~v the velocities, and f(~v,~x,t) represents a general form of the distribu-
tion function.

5 Inflight Calibration
The primary instrument used for bulk solar wind parameters is the PESA Low detector. The

PESA Low instrument was equipped with a pinhole attenuator used to reduce the incident flux by
a factor of 50 but maintain the same energy-angle response. One of the primary difficulties in cal-
ibrating the PESA Low moments resulted from the use of the AMPTEK A111 preamplifier. This
preamplifier had a couple of issues which made it difficult to determine its electronic dead time. One
of the main difficulties lay in the preamp’s response after aninput pulse which satisfied the threshold
conditions for a count. It turned out that the dead time of thepreamp depended on the pulse height
distribution of the previous pulse [J.P. McFaddon, Personal Communication, July 18, 2011]. Thus,
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one is left trying to calibrate the instrument while it is in flight9.
The PESA Low instrument is composed of eight anodes which gives the detector a 5.625◦

poloidal angular resolution within±22.5◦ of the spin plane10. 64 energy sweeps per spin provide
a 5.625◦ azimuthal angular resolution. The dynamic range of the energy bins (14 total) is adjusted
each spin so that Emax/Emin ∼ 10 and Emin ∼ 2/5 of the peak count rate. This is done so the instrument
can track the solar wind and keep a high energy resolution [McFadden et al., 2007;Wüest et al.,
2007]. Note that the typical solar wind beam has angular widths comparable to the angular res-
olution of the PESA Low detector. On board moments are computed from an 8×8 array of solid
angles(anodes)×14 energies for each spin period. Regular PESA Low distributions sent to ground
only include 5×5 array of solid angles(anodes)11 in one spin period, once every eight spins or∼24
seconds.

5.1 Dead Time and Efficiency
We assume that the detector efficiency is constant (or flat) with respect to energy, which is a

reasonable assumption for the energy range used. This requires that the preacceleration of the ions
into the detector by the plate bias voltage be large enough tomake all the ions have impact energies
high enough to generate the 2× 106 electrons in the MCP channels. The bias voltage on 3DP was
slowly increased during the first four years of the mission toaccount forscrubbing, but has remained
relatively constant since12. As previously mentioned, the A111 dead time depends upon both the
amplitude of the initial and trailing charge pulses, where larger initial pulses can cause larger dead
times before a second pulse can be registered.

The peak ion count rate of an ideal detector in response to a drifting Maxwellian is ∝ Nio

Vo
4/VTio

3, where Nio is the uncalibrated ion density (cm−3), Vo is the uncalibrated solar wind
bulk flow (km/s), and VTio is the uncalibrated ion thermal speed (km/s) [McFadden et al., 2007;
Wüest et al., 2007]. If we let Nit be thetrue ion density (values obtained from the SWE key param-
eters CDF files), then we can say:

Nit =
εNio

1− τRmax
(49)

whereε is the absolute detector efficiency,τ is the detector dead time correction (seconds), and
Rmax = Nio Vo

4/(106 VTio
3). The factor 106 is for unit conversions to make the units of Rmax =

counts/second.
To calculate the valuesε andτ, we can use the following algorithm:

χ2 (ε ,τ) =
M−1L

∑
j=0

[

yj −Y (x j ,a)
σ j

]2

(50)

9While most missions require in flight calibration due toscrubbing, newer missions have used preamplifiers with fixed
electronic dead times. Thus, the majority of the calibration deals with the MCP efficiency, since the dead time is a well
known constant (except at very high count rates).

10A requirement of the Wind SC’s attitude is that it maintain a spin axis within±0.5◦ of the celestial pole. Thus, the spin
plane is effectively the ecliptic plane.

11In burst mode, the detector returns the full 8×8 array.
12The detector is currently set at∼2.3-2.5 kV with another∼1 kV available if necessary [D. Larson, Personal Communi-

cation, July 18, 2011]
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where yj = (Nit /Nio) j , M = number of data points used,σ = STDDEV(y,/NAN)*M, and the second
term is given by:

Y (x j ,a) =
(

ε
1− τRmax

)

j . (51)

Though we said above that (Nit /Nio) is a linear function (Equation 49), the use of aχ2 distribu-
tion provides a way to test the linear dependence of the variables. To construct ourχ2 distribu-
tion, we need to create dummy arrays of possible values forε andτ using known physical con-
straints/limitations. We let 0.3≤ ε ≤ 1.213 and 10−6 ≤ τ ≤ 1.014, where we allow the user to define
the number of points in each array. Once the value ofχ2 has been estimated for all values ofε and
τ, we find the minimum and the corresponding values ofε andτ are the efficiency and dead time,
respectively.

5.2 IDL Implementation
The automated routine is calledcalc pl mcp eff dt.pro and is located in the

∼/wind 3dp pros/LYNN PRO/pesalow calibration/ directory. The man page provides some useful
information and some relevant references.

Let the following definitions be true:

1. nit= Nit

2. nio= Nio

3. vswm= Vo

4. vti = VTio

5. rmax= Rmax

6. and follow the IDL implementation below:

slope= nit/nio
gd= N ELEMENTS(slope)
width= CEIL(1d-2*gd)
; => smooth the slope using autoregressive backcasting
so= removenoise(slope,NBINS=width)
nn= 100L
sigs= STDDEV(slope,/NAN)*gd
eff = DINDGEN(nn)*( 1.2d0 - 0.3)/(nn - 1L)+ 0.3
tau= DINDGEN(nn)*( 1d0 -ALOG10(1d-6))/(nn - 1L)+ ALOG10(1d-6)
tau= 1d1^tau

chisq= DBLARR(nn,nn)
FORj=0L, nn - 1L DO BEGIN

13The efficiency can be>1.0 here due to unknowns and uncertainties in other parameters, though the true efficiency can
never be so. Thus, this value is really an effective efficiency used to modify the detector geometry factor.

14The low end estimate results from the 2 MHz clock used, which has a Nyquist period of∼1 µs.
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FORk=0L, nn - 1LDO BEGIN
ty = eff[j]/(1d0 - tau[k]*rmax)
num= (so - ty)/sigs[0]
temp= TOTAL(num^2,/NAN,/DOUBLE)
chisq[j,k]= temp[0]
ENDFOR
ENDFOR
; => find minimum
minchisq= MIN(chisq,/NAN,ln)
; => find corresponding element
gmin= ARRAY INDICES(chisq,ln)
; => define efficiency and dead times
efficiency= eff[gmin[0]]
deadtime= tau[gmin[1]]

A Appendix: Definitions
Let us define the following:

1. FOV≡ field of view

2. R1(2) = hemisphere radius of inner(outer) spherical curved plate analyzer (R2 > R1), and∆R
= R2 - R1

3. E/q≡ kinetic energy per charge of particle traveling at radius R= 1/2∆V/∆R R2 R1/R, where
∆V is potential between hemispheres

4. kM ≡ analyzer constant= (R2 + R1)/(2 ∆R) ≃ 2 (E/q)/∆V

5. ∆E/E≡ acceptance energy range at energy E, typically held constant so that if E/q changes,
∆E/q changes as well

6. MCP≡ microchannel plate

7. channel bias angle≡ angle made by MCP channels with respect to normal to plate surface

8. gain factor≡ inherent characteristic of channel wall material and a function of electric field
intensity inside channel that determines the number of secondary electrons produced per inci-
dent particle

9. ∆ψ ≡ angular acceptance of a top-hat analyzer [defined by geometry of detector]

10. ∆θ ≡ polar angular resolution defined by discrete anode size and distribution

11. θ ≡ polar angle defined by discrete anode positions= (n - 0.5)∆θ , where n= zone number
for nth-anode
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12. φ ≡ azimuthal angle for eachθ

13. Trange ≡ time taken to complete one sweep through the full E/q range

14. ∆φ ≡ azimuthal angular resolution, which for a spinning spacecrat, is controlled by Trange/Tspin,
where Tspin is the spin period. Typically this ratio is kept to an integervalue where Nsweeps=
Tspin/Trange.

15. tacc ≡ accumulation time= typically a fixed time interval over which data is taken, which
corresponds to the azimuthal angular acceptance angle∆φ acc ⇒ ∆ψ ’ ≃ ∆ψ + ∆φ acc is the full
range of accepted azimuth angles during tacc

16. ∆ψ ’ ≡ angular acceptance angle with spin effects included= ∆ψ + ∆φ acc sinθ

17. ∆Ee f f/q ≡ effective passband= range of energies admitted in tacc which is typically larger
than∆E/q due to the change in E/q during tacc for swept analyzers

18. sweep≡ Common practice of how an instrument changes from one energyto another, typi-
cally done so that E/q falls byδE/q (typically set to∆E/q) in tacc. This is often done logarith-
mically. If there are 15 energy bins, then there will be 16 steps in one sweep; 15 energy steps
and 1 flyback.

19. ∆φ sweep≡ azimuthal angle through which the spacecraft has swept in Tsweep(= Trange). Typical
instruments constrain parameters so that∆φ sweep= ∆φ .

20. ∆Ω ≡ solid angle resolution= ∆θ × ∆ψ (in an ideal detector= ∆θ × ∆φ sinθ )

21. ES(EM)≡ electrostatic(electromagnetic)
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